CLASS POLICIES
You are responsible for your education, and I am here to help you. By your enrollment in this class, I expect that you are willing to assume all responsibilities for successful completion of the course and abide by the policies that are set forth. Class time will be spent in discussion and lecture. It is expected that every student will participate and will not disturb the class with unnecessary talking. When you come to class, it is expected that you arrive on time, and that you will stay for the entire class period. If you arrive late, please come in and quietly take a seat in the last row so as not to disrupt the class. Do not pack your books until the lecture, discussion, or other class activity is finished. Do not walk out in the middle of class. This is disrespectful to me and to your fellow classmates. iPods and other headsets may not be worn in class. PDAs, cell phones, etc., are to be turned off. Hats are to be removed upon entering the classroom.

TEXTS
Maps: Geocart Series: #100 & #101 (1 copy each), and #102 (2 copies)
Supplies: non-cell-phone calculator (optional), colored pencils, stapler

WITHDRAWALS
There are district policies regarding attendance and withdrawals. Non-attendance does not constitute withdrawal. Once you have started attending class (this includes you since you have now received this course syllabus), it becomes your responsibility to drop. I will exclude only “no-shows” up through “census week.” You must be aware of the dates pertaining to withdrawals (see college catalogue and schedule of classes). You may drop the class any time through the last date to drop via the Admissions Office, on-line, or by phone. If you stop attending class without filing an official drop card with Admissions and Records by the scheduled deadline, you will receive a grade of Fail. You should never rely on your instructor to exclude you.

PREPARATION
You are expected to invest a minimum of two hours in preparation for every hour of class time: text readings, review of class notes, assignments, etc.
ON-LINE MATERIALS
Most of the “handouts” for this class will be distributed “on-line.” Computers are available in The Learning Center (Room 1604). You will receive help and more information in class. My web address is:
http://faculty.piercecollege.edu/hobbsgl

ASSIGNMENTS
There will be several map assignments. The last dates these may be submitted will be announced in class. They are to be submitted to me in person, (not in my mailbox) by the beginning of class the day they are due. Assignments submitted late, for whatever reason, will be penalized severely, receiving no credit after 1 week. Sufficient lead-time is given for all assignments, so you may want to hand them in early. Plan ahead.

All written work, except for that done in class, must be word-processed. No exceptions.

EXAMS
Exams may include objective (multiple choice, true-false, matching, completion, problem solving) and atlas questions. Scan-Tron form #883 will be used; these are available at the bookstore. No make-ups will be given for missed exams. If you miss one exam (except the final), points will be assigned based on 85% of the highest exam score during the semester. Any additional missed exam will receive zero points. The final exam must be taken; a missed final will receive zero points. Note the date and time of the final exam. Exams will be returned in class for review and then recollected to be kept on file.

ACADEMIC INTEGRITY POLICY
Cheating is unacceptable behavior for college students, and this class is no exception. If you are part of a cheating incident (either by giving or receiving assistance on an exam, or through plagiarism—submitting anyone else’s work as your own), you will receive a score of zero (with possible failure of the course), and recommended for disciplinary action by the Vice President of Student Services.

GRADES
You earn grades, I do not give them! Grades are based on a percentage of possible points—totaled from exams, quizzes, and assignments. No exams will be dropped. A portion of your grade is based on class participation; excessive absences will have a negative effect on your grade. The grading scale is as follows:

A = 90–100%
B = 80–89%
C = 65–79%
D = 55–64%
F = below 55%

COURSE OUTLINE
Unit 1 — Chapters 1–2, Appendix A
Introduction/General Concepts
Earth-Sun Relationships (pp. 36-50)
Maps & Mapping
(Atlas: North America)

Unit 2 — Chapters 2 (pp. 51 ff) –5
Earth’s Atmosphere
Atmospheric Energy & Global Temperatures
Atmospheric & Oceanic Circulation
Atmospheric Water & Weather
(Atlas: Middle & South America)

Unit 3 — Chapters 8–14
Dynamic Planet
Tectonic Processes
Weathering, Karst, Mass Wasting
Fluvial Erosion
Glaciation
Arid Landforms
Coastal and Undersea Landforms
(Atlas: Europe & Asia)

Unit 4 — Chapters 7, 15–16, Appendix C
Global Climate Patterns
Soils
Ecosystems and Biomes
(Atlas: Africa, Australia & Oceania)
EXTRA CREDIT
Extra credit is not to be a substitute for regular class work. It is designed to aid in cases of borderline grades and not to constitute major grade improvements. Extra credit may be earned by attending and reporting on special lectures, reporting on a journal article, or by collecting articles of geographic current events as described below. A maximum of 15 extra credit points may be earned; in order for extra credit to put you into a grade category (e.g., to receive an A) you must have received that grade (e.g., an A) on at least one exam.

LECTURE REPORTS
Attend a lecture of geographical interest:
1. Los Angeles Geographical Society: Meets from October to May on the first Friday of the month (except January) at 8:00 p.m., at L.A. City College, 855 N. Vermont, L.A. Check posted schedule for specific topics. http://www.lageographic.org/

2. Pierce College Geography Lecture Series: Check posted schedule for topics and dates.

3. Any other lectures or TV programs such as National Geographic, Nova, etc., which pertain to physical geography themes. These should not be merely “travelogue” type programs. If in doubt, check with the instructor for approval.

After attending and taking notes on the lecture (or taking notes on the TV program), submit a report on the presentation. It must be at least 2 pages (word-processed, double-spaced, 1" margins), using correct grammar, spelling, etc. The report narrative should include the title and date of presentation or airing; name of lecturer or program title; a summary of the lecture; and, if desired, a short critique. Notes taken during the lecture/presentation must be attached. Staple all pages together. The reports are due within one week following the lecture or airing of the program. Each report will be worth up to a maximum of 5 points.

JOURNAL REPORTS
Read an article about some aspect of physical geography from a geographical or related journal. Some suggestions are Annals of the Association of American Geographers, The Professional Geographer, The California Geographer, Geographical, Weatherwise, etc. Explore the Periodical Section of the library for others, and bring other journals to the instructor for approval. (No National Geographic Magazine articles, although their research magazine [titled Research] is acceptable.) The journal article should be at least 5-6 pages of text in length. (No on-line articles may be used.) The summary report should follow the same guidelines as for the lecture report (see previous section), with a “xerox” of the entire article attached—including graphics. Each journal report will be worth up to a maximum of 5 points. All reports are due by the beginning of the last class meeting of the 13th week of the semester (Wednesday November 26, 2008).

CURRENT NEWS
Geography is the world around us. Events that occur on a daily basis are influenced by geography. Read the newspapers, Time and Newsweek, Themes in the Times (available in class), and other such publications for articles that relate to physical geography. “Column One” of the LA Times often has significant articles. “Xerox” the article, write a 1-page summary (see above for details), and submit it within one week of its publication. Do not save them, but turn them in on a regular basis. Each article report will be worth one point. See “Journal Reports” for last date any will be accepted.

NOTE: No extra credit, other than scheduled lectures or programs, will be accepted after the beginning of the last class meeting of 13th week of the semester (Wednesday November 26, 2008). See “Assignments” section on previous page for details. Mark your calendar and plan ahead!
Student Learning Outcomes

Upon completion of this course, students will be able to:

1. Demonstrate ability to apply scientific systems of measurement to natural phenomena.
2. Critically analyze maps to identify, measure and evaluate environmental features.
3. Explain the patterns, processes and distributions of the earth’s subsystems of the hydrosphere, biosphere, lithosphere and atmosphere.
4. Demonstrate ability to apply scientific principles, theories and methods to natural phenomena.

Course Objectives

Upon completion of this course, students will be able to:

1. Apply the process of science to problem solving situations and propose procedural steps necessary for scientific investigation.
2. Demonstrate the basic concepts of an Earth Systems Science approach to the interactions between the lithosphere, hydrosphere, biosphere and atmosphere.
3. Differentiate between map projection types and assess their usefulness. Describe the major map essentials and apply them to selected maps.
4. Describe and distinguish the fundamental aspects of Earth-sun relationships such as the seasons and orbital extremes. Calculate sun angles, assess radiation intensity and relate this to temperature patterns. Illustrate the Greenhouse Effect and its relation to temperatures.
5. Describe and differentiate between solar and terrestrial radiation.
6. Differentiate between maximum and minimum temperatures as responses to radiation surpluses and deficits. Compare and contrast continental versus maritime temperature patterns as they relate to solar radiation inputs seasonally.
7. Sketch the pattern of global surface pressure and winds and explain the resultant movement of air masses and ocean currents in relation to the forces which act on air.
8. Distinguish between stable and unstable atmospheric conditions and explain their associated weather patterns.
9. Illustrate the pattern of known tectonic plates and compare and contrast plate boundary processes.
10. Distinguish between erosional and depositional landforms associated with fluvial, glacial, aeolian and oceanic wave processes.
11. Describe the present pattern of climate types and locate them on a map.
12. Compare the present climate pattern to that of the Pleistocene.
13. Differentiate between the soil formation processes of laterization, podzolization, calcification and salinization and describe their geographic locations.
14. Compare and contrast the Earth's principle terrestrial biomes and illustrate their relationship to major soil types.
15. Categorize the major global biomes and describe their characteristics and geographic patterns.